Modeling and Forecasting Stock Return Volatility Using a Random Level Shift Model∗

نویسندگان

  • Yang K. Lu
  • Pierre Perron
چکیده

We consider the estimation of a random level shift model for which the series of interest is the sum of a short memory process and a jump or level shift component. For the latter component, we specify the commonly used simple mixture model such that the component is the cumulative sum of a process which is 0 with some probability (1−α) and is a random variable with probability α. Our estimation method transforms such a model into a linear state space with mixture of normal innovations, so that an extension of Kalman filter algorithm can be applied. We apply this random level shift model to the logarithm of absolute returns for the S&P 500, AMEX, Dow Jones and NASDAQ stock market return indices. Our point estimates imply few level shifts for all series. But once these are taken into account, there is little evidence of serial correlation in the remaining noise and, hence, no evidence of long-memory. Once the estimated shifts are introduced to a standard GARCH model applied to the returns series, any evidence of GARCH effects disappears. We also produce rolling out-ofsample forecasts of squared returns. In most cases, our simple random level shifts model clearly outperforms a standard GARCH(1,1) model and, in many cases, it also provides better forecasts than a fractionally integrated GARCH model. JEL Classification Number: C22.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Stock Return Volatility Using Symmetric and Asymmetric Nonlinear State Space Models: Case of Tehran Stock Market

Volatility is a measure of uncertainty that plays a central role in financial theory, risk management, and pricing authority. Turbulence is the conditional variance of changes in asset prices that is not directly observable and is considered a hidden variable that is indirectly calculated using some approximations. To do this, two general approaches are presented in the literature of financial ...

متن کامل

Modeling Stock Market Volatility Using Univariate GARCH Models: Evidence from Bangladesh

This paper investigates the nature of volatility characteristics of stock returns in the Bangladesh stock markets employing daily all share price index return data of Dhaka Stock Exchange (DSE) and Chittagong Stock Exchange (CSE) from 02 January 1993 to 27 January 2013 and 01 January 2004 to 20 August 2015 respectively.  Furthermore, the study explores the adequate volatility model for the stoc...

متن کامل

A Fuzzy Random Walk Technique to Forecasting Volatility of Iran Stock Exchange Index

Study of volatility has been considered by the academics and decision makers dur-ing two last decades. First since the volatility has been a risk criterion it has been used by many decision makers and activists in capital market. Over the years it has been of more importance because of the effect of volatility on economy and capital markets stability for stocks, bonds, and foreign exchange mark...

متن کامل

The Effect of Uncertainty of Macroeconomic Indicators on Tehran Stock Exchange Return With an Approach of the TVP-SV Model

One of the most important duties of financial economy is modeling and forecasting the volatilities of price of risky assets. From analysts and policy makers’ view, price volatility is a key variable contributing to perception of market volatilities. Therefore, analysts need to have an appropriate of forecast of price volatility as a necessary input to perform duties such as risk management, por...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008